Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. IV. A multicompartment model accounts for tetramethylammonium entry into goblet cavities

نویسندگان

  • Koch
  • Moffett
چکیده

A quantitative model was developed to explain the kinetics of tetramethylammonium (TMA+) movement into and out of the goblet cavities of posterior midgut cells of Manduca sexta based on the data of the accompanying paper, which indicated that TMA+ does not enter the goblet cavity directly from the lumen. The model has two cellular compartments between the lumen and goblet cavity; these have been tentatively identified as the columnar cell and goblet cell cytoplasm. Five transmembrane pathways are included: from lumen to columnar cell, from columnar cell to goblet cell, from goblet cell cytoplasm to goblet cell cavity, and across the basal membrane of each cell type. These pathways need not be channels; they could use endocytotic or exocytotic mechanisms or, in the case of the cell-to-cell passage, septate junctions. However, in all cases, transfer is proportional to the electrochemical gradient. The model was tested against the results obtained after exposure to TMA+ in short-circuited and open-circuited tissues as well as results from an open-circuited tissue that did not develop a large transepithelial potential. Although driving forces for TMA+ across the membrane barriers were quite different in the different experimental conditions, the transfer coefficients from lumen to columnar cell, from columnar to goblet cell and from both cells across the basal membrane were the same. The only transfer coefficient that changed between short-circuit and open-circuit conditions was that from goblet cell cytoplasm to goblet cavity. This value was high under short-circuit conditions (when K+ transport activity is high), but low under open-circuit conditions (when K+ transport activity is low). The model suggests a hypothesis in which TMA+ enters the goblet cavity by an indirect route across the cell membrane of columnar cells, and thence passes to the goblet cell cytoplasm through intercellular junctions. Results from experiments with cytochalasin E suggest that the actin-based cytoskeleton is involved in limiting cell­cell coupling. In this model, TMA+ passes from the goblet cell cytoplasm to the goblet cavity via the K+/nH+ antiport believed to mediate active transepithelial K+ transport. However, although actively transported K+ is believed to pass from goblet cavity to lumen, TMA+ cannot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae. III. Goblet valve patency

The midgut epithelium of lepidopteran insect larvae contains characteristic goblet cells possessing an apical cavity surrounded by goblet cell apical membrane (GCAM) and guarded from the gut lumen by a valve-like structure. The currently accepted model of active K+ secretion by the midgut of lepidopteran insect larvae locates the major active step at the GCAM, implying that actively transported...

متن کامل

Electrophysiology of K Transport by Midgut Epithelium of Lepidopteran Insect Larvae

The apical surface of the midgut of Manduca sexta larvae is composed of the apical membranes of columnar cells, in the form of microvilli, and the apical goblet of goblet cells. Considerable evidence has suggested that the apical electrogenic pump that is responsible for transepithelial K transport is located on the apical membrane of goblet cells. In the present study the transapical potential...

متن کامل

Insect midgut K(+) secretion: concerted run-down of apical/basolateral transporters with extra-/intracellular acidity.

In lepidopteran larvae, three transport mechanisms are involved in the active and electrogenic K(+) secretion that occurs in the epithelial goblet cells of the midgut. These consist of (i) basolateral K(+) channels, allowing K(+) entry from the haemolymph into the cytosol, (ii) apical electrogenic K(+)/2H(+) antiporters, which are responsible for secondary active extrusion of K(+) from the cell...

متن کامل

The pH profile, gross structure, ultrastructure and immunolabeling of the mosquito (Aedes aegypti) larval midgut are described as a first step in analyzing the role of plasma membrane H+ V-ATPase in the alkalization

mosquito larvae (Dow, 1984). The alkalinity is thought to aid in the breakdown of dietary tannins, which interfere with nutrient absorption (Berenbaum, 1980). The alkalization mechanism is partially understood in caterpillars, especially in the model lepidopteran insect Manduca sexta, in which a proton pump (H+ V-ATPase; Schweikl et al., 1989; Wieczorek et al., 1986, 1989, 1990) hyperpolarizes ...

متن کامل

a-AMINOISOBUTYRIC ACID TRANSPORT IN THE MIDGUT OF TWO LEPIDOPTERAN LARVAE

1. A net absorption of a-aminoisobutyric acid (AIB) takes place in vitro in the midgut of two lepidopteran larvae, Philosamia cynthia Drury and Bombyx mori L. 2. lnP. cynthia the midgut epithelium accumulates AIB from the lumen, while in the same conditions AIB accumulation is not observed in B. mori midgut cells. 3. In P. cynthia, when the lumen is bathed with a low K solution, the net absorpt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 198 Pt 10  شماره 

صفحات  -

تاریخ انتشار 1995